Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 345, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500077

RESUMO

BACKGROUND: Meningioma, the most prevalent intracranial tumor, possesses a significant propensity for malignant transformation. Circular RNAs (circ-RNAs), a class of non-coding RNAs, have emerged as crucial players in tumorigenesis. This study explores the functional relevance of hsa_circ_0004872, a specific circ-RNA, in the context of meningioma. METHODS: Molecular structure and stability of hsa_circ_0004872 were elucidated through PCR identification. Meningioma cell proliferation and apoptosis were assessed using the CCK-8 assay and flow cytometry, respectively. Gene and protein expression were analyzed via qRT-PCR and western blot. Molecular interactions were confirmed through dual-luciferase reporter gene and RIP assays. RESULTS: Hsa_circ_0004872, derived from exons 2 to 4 of the host gene MAPK1, demonstrated enhanced stability compared to its host MAPK1. Clinical data described that hsa_circ_0004872 was reduced in meningioma tissues and cell lines, and negatively correlated to poor survival rate of meningioma patients. Overexpression of hsa_circ_0004872 exhibited inhibitory effects on cell proliferation and promotion of apoptosis in vitro. Subsequent investigations unveiled a direct interaction between hsa_circ_0004872 and miR-190a-3p, leading to the activation of the PI3K/AKT signaling pathway through targeting PTEN. Notably, miR-190a-3p silence accelerated the apoptosis and proliferation inhibition of meningioma cells by inactivating PTEN/PI3K/AKT signaling, while miR-190a-3p overexpression showed an opposite effect, which greatly reversed the anti-tumor effects of hsa_circ_0004872 overexpression. CONCLUSION: In summary, our findings highlighted the intricate role of hsa_circ_0004872 in meningioma, shedding light on the regulatory mechanisms involving circ-RNAs in tumor progression. This positions hsa_circ_0004872 as a potential key regulatory factor in meningioma with implications for future therapeutic interventions.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Neoplasias Meníngeas/genética , Meningioma/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/genética
2.
Br J Neurosurg ; : 1-8, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542381

RESUMO

OBJECTIVE: Resection of high-grade glioma with sodium fluorescein can improve the resection rate of the glioma and improve survival. However, it is unclear whether the yellow fluorescence boundary of the high-grade glioma is consistent with the actual boundary of the tumor. This study explores the yellow fluorescence boundary and the actual tumor boundary in high-grade glioma surgery. METHODS: This is a retrospective analysis of 10 patients with high-grade gliomas who underwent tumor visualization with sodium fluorescein. After staining of the tumor, random selections of both developed and non-developed yellow fluorescent border tissue at the fluorescence chromogenic boundary were made, followed by pathological examination. Claudin-5, an important component of the tight connections between vascular endothelial cells, was assessed by immunohistochemistry and qRT-PCR in the tumor and surrounding tissues in order to determine the tumor cell content of the tissue, blood-brain barrier damage, and vascular proliferation. The yellow fluorescence boundary was compared with the actual tumor boundary and the results analyzed. RESULTS: Tumor cells were still detected outside the yellow fluorescence boundary during high-grade glioma surgery (P < 0.05). Claudin-5 expression was higher in high-grade gliomas than in adjacent normal tissues (P < 0.05), while disconnected Claudin-5 expression was associated with intraoperative yellow fluorescence imaging (r = 0.67). CONCLUSIONS: There is a difference between the yellow fluorescence boundary and the actual boundary of the tumor in high-grade glioma, and there are glioma cell infiltrations in the brain tissue of the undeveloped yellow fluorescent border. To ensure patient recovery and function, it is recommended that tumor resection be expanded based on yellow fluorescence visualization. Claudin-5 is overall up-regulated in high-grade gliomas, but some Claudin-5 expression is disconnected. This Claudin-5 expression pattern may be related to the development of yellow fluorescence.

3.
Front Neurosci ; 15: 651710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497483

RESUMO

In recent years, neuroimaging evidence shows that the brains of Parkinson disease (PD) with impulse control disorders (ICDs) patients have functional disconnection changes. However, so far, it is still unclear whether the topological organization is damaged in PD patients with ICD. In this study, we aimed to explore the functional brain network in 18 patients with PD with ICDs (PD-ICD) and 18 patients with PD without ICDs (PD-nICD) by using functional magnetic resonance imaging and graph theory approach. We found that the PD-ICD patients had increased clustering coefficient and characteristic path length, while decreased small-world index compared with PD-nICD patients. Furthermore, we explored the hypothesis whether the abnormality of the small-world network parameters of PD-ICD patients is accompanied by the change of nodal centrality. As we hypothesized, the nodal centralities of the default mode network, control network, and dorsal attention network were found to be significantly damaged in the PD-ICD group compared with the PD-nICD group. Our study provides more evidence for PD-ICD patients' brain network abnormalities from the perspective of information exchange, which may be the underlying pathophysiological basis of brain abnormalities in PD-ICD patients.

4.
Aging (Albany NY) ; 13(13): 17655-17672, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244461

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common type of brain cancer with poor survival outcomes and unsatisfactory response to current therapeutic strategies. Recent studies have demonstrated that ferroptosis-related genes (FRGs) are linked with the occurrence and development of GBM and may become promising biological indicators in GBM therapy. METHODS: We systematically assessed the relationship between FRGs expression profiles and prognosis in glioma patients based on the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets to establish a risk score model according to the gene signature of multiple survival-associated DEGs. Further, the differences between the tumor microenvironment score, immune cell infiltration, immune checkpoint expression levels, and drug sensitivity in the high- and low-risk group are analyzed through a variety of algorithms in R software. RESULTS: GBM patients were divided into two subgroups (high- and low-risk) according to the established risk score model. Patients in the high-risk group showed significantly reduced overall survival compared with those in the low-risk group. Also, we found that the high-risk group showed higher ImmuneScore and StromalScore, while different subgroups have significant differences in immune cell infiltration, immune checkpoint expression levels, and drug sensitivity. In summary, we developed and validated an FRGs risk model, which served as an independent prognostic indicator for GBM. Besides, the two subgroups divided by the model have significant differences, which provides novel insights for further studies as well as the personalized treatment of patients.


Assuntos
Neoplasias Encefálicas/terapia , Ferroptose , Glioblastoma/terapia , Imunoterapia/métodos , Algoritmos , Biomarcadores Tumorais , Neoplasias Encefálicas/epidemiologia , Linhagem Celular Tumoral , China/epidemiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/epidemiologia , Humanos , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Análise de Sobrevida , Resultado do Tratamento , Microambiente Tumoral
5.
Front Oncol ; 11: 667884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976783

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive malignant primary central nervous system tumor. Although surgery, radiotherapy, and chemotherapy treatments are available, the 5-year survival rate of GBM is only 5.8%. Therefore, it is imperative to find novel biomarker for the prognosis and treatment of GBM. In this study, a total of 141 differentially expressed genes (DEGs) in GBM were identified by analyzing the GSE12657, GSE90886, and GSE90598 datasets. After reducing the data dimensionality, Kaplan-Meier survival analysis indicated that expression of PTPRN and RIM-BP2 were downregulated in GBM tissues when compared with that of normal tissues and that the expression of these genes was a good prognostic biomarker for GBM (p<0.05). Then, the GSE46531 dataset and the Genomics of Drug Sensitivity in Cancer (GDSC) database were used to examine the relationship between sensitivity radiotherapy (RT) and chemotherapy for GBM and expression of PTPRN and RIM-BP2. The expression of PTPRN was significantly high in RT-resistant patients (p<0.05) but it was not related to temozolomide (TMZ) resistance. The expression level of RIM-BP2 was not associated with RT or TMZ treatment. Among the chemotherapeutic drugs, cisplatin and erlotinib had a significantly good treatment effect for glioma with expression of PTPRN or RIM-BP2 and in lower-grade glioma (LGG) with IDH mutation. (p < 0.05). The tumor mutational burden (TMB) score in the low PTPRN expression group was significantly higher than that in the high PTPRN expression group (p=0.013), with a large degree of tumor immune cell infiltration. In conclusion, these findings contributed to the discovery process of potential biomarkers and therapeutic targets for glioma patients.

6.
Neurosci Res ; 170: 32-40, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32991951

RESUMO

LncRNA growth arrest special 5 (GAS5) and microRNA-106b (miR-106b) have been reported to be involved in the regulation of gliomas. However, their precise mechanisms in regulating the progression and development of gliomas remain unclear. We aimed to investigate the interaction between GAS5 and miR-106b, and their influence on the proliferation, migration, and invasion of gliomas cells. Western blotting and qRT-PCR were applied for measuring expression of protein and mRNA, respectively. The proliferation, migration, and invasion of cells were measured by MTT, wound healing, and transwell assays, respectively. Dual luciferase reporter assay was applied for confirming the binding site between miR-106b and GAS5, miR-106b and PTEN. Significant higher expression of miR-106b, and lower expression of GAS5 and PTEN in the glioma tissues were observed. The binding sites between GAS5 and miR-106b, miR-106b and PTEN were identified. GAS5 could regulate the expression of PTEN through targeting miR-106b, and further influence EMT process, and the proliferation, migration, and invasion of gliomas cells. Meanwhile, PTEN could remarkably inhibited the proliferation, migration and invasion of glioma cells. The influence of PTEN on glioma cells and EMT was similar to GAS5. GAS5 could regulate the EMT process, and the migration of gliomas cells through miR-106b targeting PTEN. Therefore, our findings may provide a new thought for the study of pathogenesis and treatment of glioma.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , RNA Longo não Codificante/genética
7.
Gene ; 576(1 Pt 1): 22-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432005

RESUMO

The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target.


Assuntos
Movimento Celular , Proliferação de Células , Glioblastoma/enzimologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Neoplasias/metabolismo , Aciltransferases , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...